479 research outputs found

    Finite element simulation of semi-finishing turning of Electron Beam Melted Ti6Al4V under dry and cryogenic cooling

    Get PDF
    open6noIn the last few years, important step forwards have been made on Finite Element Simulation of machining operations. Wrought Ti6Al4V alloy has been deeply investigated both numerically and experimentally due to its wide application in the industry. Recently, Additive Manufacturing technologies as the Electron Beam Melting and the Direct Melting Laser Sintering are more and more employed in the production of biomedical and aeronautical components made of Ti6Al4V alloy. Fine acicular microstructures are generated by the application of additive manufacturing technologies, affecting the mechanical properties and the machinability. By the consequence, this peculiarity has to be considered in modelling the material behaviour. In this work, a numerical analysis of cylindrical external turning on Electron Beam Melted (EBM) Ti6Al4V alloy is presented. A Johnson-Cook constitutive equation was implemented as a flow stress model and adapted with respect to the wrought Ti6Al4V alloy. The model was calibrated and validated through the cutting forces and temperatures measurements acquired under dry and cryogenic lubricating conditions.openBordin, A; Imbrogno, S.; Rotella, G.; Bruschi, S.; Ghiotti, A.; Umbrello, D.Bordin, Alberto; Imbrogno, S.; Rotella, G.; Bruschi, Stefania; Ghiotti, Andrea; Umbrello, D

    Finite element modeling of microstructural changes in hard machining of SAE 8620

    Get PDF
    Surface and subsurface microstructural characterization after machining operations is a topic of great interest for both academic and industrial research activities. This paper presents a newly developed finite element (FE) model able to describe microstructural evolution and dynamic recrystallization (DRX) during orthogonal hard machining of SAE 8620 steel. In particular, it predicts grain size and hardness variation by implementing a user subroutine involving a hardness-based flow stress and empirical models. The model is validated by comparing its output with the experimental results available in literature at varying the cutting speed, inser0000-0001-6268-6720t geometry and flank wear. The results show a good ability of the customized model to predict the thermo-mechanical and microstructural phenomena taking place during the selected processes

    Innovative manufacturing process of functionalized PA2200 for reduced adhesion properties

    Get PDF
    This work proposes an approach to fabricate micro patterned surfaces on PA2200 polyamide in order to improve its performance in terms of wettability and adhesion. In more detail, the present work aims to change the wettability of the surface and decrease their bacteria adhesion tendency. The experimental procedure consists of imprinting a set of different micro patterned structures over the polymer in order to verify the effectiveness of the methodology to change the contact angle of the surface, and in turn, reduce the occurrence of bacteria adhesion. Four different surface patterning were produced by laser ablation of a commercially pure titanium alloy, and then imprinted over the polyamide by surface stamping. The resulting surfaces were analyzed by topographical characterization and scanning electron microscopy. The wettability was probed by contact angle measurements while the bacteria adhesion was analyzed by adhesion test. The experimental results demonstrate the effectiveness of the method to modify the surface characteristics and to obtain a reliable patterned surface without using chemical hazardous material; opening to the possibility to replicate more complex structures and to obtain graded engineering surfaces

    Microstructural and Mechanical Properties of Al2O3 and Al2O3/TiB2 Ceramics Consolidated by Plasma Pressure Compaction

    Get PDF
    Alumina oxide ceramics were produced by plasma pressure compaction (P2C) sintering process. Two types of pure α-alumina (Al2O3) and a mixture of alumina and titanium diboride (TiB2) powders were used as starting materials. Microstructure and mechanical properties, namely hardness, elastic modulus, and fracture toughness, were analyzed and correlated to the type of the sintered powders and the adopted manufacturing route. The microstructural development and the chemical composition variation induced by the sintering process were assessed by using scanning electron microscopy and x-ray diffraction. Nano-indentation and Chevron notch beam techniques were adopted to estimate the mechanical properties of the sintered ceramics. The conducted analyses show the capability of P2C technique to produce sound alumina ceramics. Pure alumina bulks exhibit a good level of compaction and mechanical properties close to those achievable with conventional sintering processes, such as hot isostatic pressing or spark plasma sintering. No significant alterations in the chemical composition of the ceramics were observed. The addition of the titanium diboride in the alumina powders caused a moderate increase in the grain size lowering the hardness and Young’s modulus of the sintered alumina and, at the same time, increased its fracture toughness to the occurrence of toughening mechanisms, like crack bridging and crack deflection

    Finite Element Modeling of Microstructural Changes in Turning of AA7075-T651 Alloy and Validation

    Get PDF
    The surface characteristics of a machined product strongly influence its functional performance. During machining, the grain size of the surface is frequently modified, thus the properties of the machined surface are different to that of the original bulk material. These changes must be taken into account when modeling the surface integrity effects resulting from machining. In the present work, grain size changes induced during turning of AA 7075-T651 (160 HV) alloy are modeled using the Finite Element (FE) method and a user subroutine is implemented in the FE code to describe the microstructural change and to simulate the dynamic recrystallization, with the consequent formation of new grains. In particular, a procedure utilizing the Zener-Hollomon and Hall-Petch equations is implemented in the user subroutine to predict the evolution of the material grain size and the surface hardness when varying the cutting speeds (180 - 720 m/min) and tool nose radii (0.4 - 1.2 mm). All simulations were performed for dry cutting conditions using uncoated carbide tools. The effectiveness of the proposed FE model was demonstrated through its capability to predict grain size evolution and hardness modification from the bulk material to machined surface. The model is validated by comparing the predicted results with those experimentally observed

    Effects of Ti6Al4V mechanical and thermal surface modification on the adhesion of a chitosan-bioactive glass coating

    Get PDF
    Biomedical implants interact with human tissues introducing significant perturbation into the body. Implant surfaces can be then functionalized enabling better biocompatibility. At the same time, the additional use of a coating provides further functions such as corrosion protection, osteointegration, and drug delivery. In this context, a composite made of chitosan and bioactive glass nanoparticles has been used for coating Ti6Al4V alloy samples processed beforehand using different processes, i.e., polishing, milling, grit blasting, and electrical discharge machining. Experiments have been carried out to correlate substrate surface conditions and coating effectiveness in terms of scratch resistance with the final aim to obtain suitable guidelines to improve substrate-coating performances
    • …
    corecore